Review: 3-22

- Mediation, path models
- HLM
- Moderation
- Ecological Fallacy

Examples: Single class:

- X₁: Smoker or not(0/1)
- Y: Picture of goat? (0/1)

 X_2 : has cancer? (0/1)

 \hat{Y} : prediction from a logistic model (0/1) or any model (e.g. a gradient boosting deep bayes neural forest)

Multi-class

Y: word is subject, direct object, or indirect object (1, 2, or 3 but order means nothing)
 Ŷ: prediction from a multi-class model
 (a "multinomial" distribution)

- Chi-Square test for independence
- (true|false) (positive|negative) based metrics:

Single class:

• X_1 : Smoker or not(0/1) X_2 : has cancer? (0/1)

N = 100 people sampled from cancer screening center population

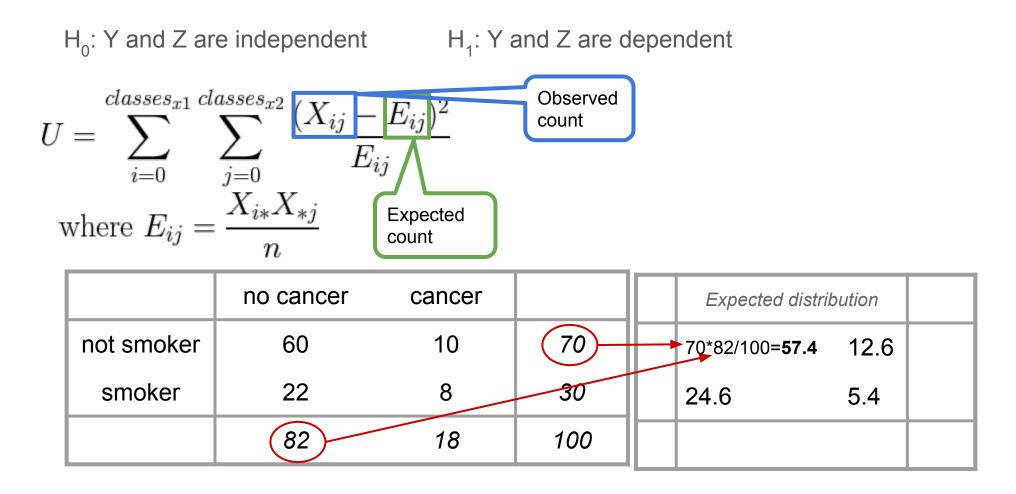
	no cancer	cancer	
not smoker	60	10	
smoker	22	8	

Single class:

• X_1 : Smoker or not(0/1) X_2 : has cancer? (0/1)

N = 100 people sampled from cancer screening center population

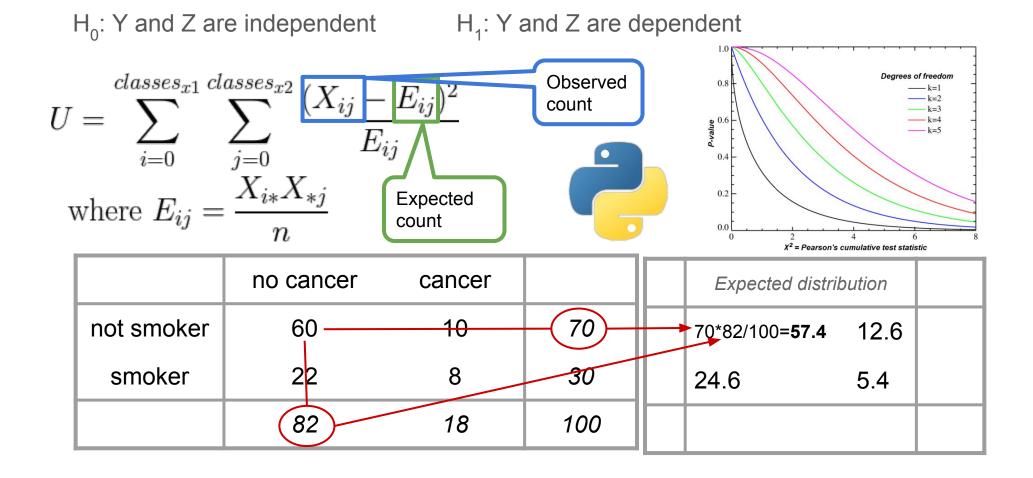
	no cancer	cancer	
not smoker	60	10	
smoker	22	8	


Chi-Squared Test for Independence

 H_0 : Y and Z are independent H_1 : Y and Z are dependent

$$U = \sum_{i=0}^{classes_{x1}} \sum_{j=0}^{classes_{x2}} \frac{(X_{ij} - E_{ij})^2}{E_{ij}}$$

where $E_{ij} = \frac{X_{i*}X_{*j}}{n}$


	no cancer	cancer	
not smoker	60	10	70
smoker	22	8	30
	82	18	100

Chi-Squared Test for Independence

Chi-Squared Test for Independence

k = df (degrees of freedom) $= (classes_{x1} - 1)(classes_{x2} - 1)$

- Chi-Square test for independence
- (true|false) (positive|negative) based metrics:

- Chi-Square test for independence
- (true|false) (positive|negative) based metrics:

			True condition		(Thank you,	
		Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{ Condition positive}}$ = $\frac{\sum \text{ Condition positive}}{\sum \text{ Total population}}$	<u>Wikipedia</u> !)
	Predicted	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
	condition	Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$
		Accuracy (ACC) =	True positive rate (TPR), Sensitivity, Recall = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$= \frac{LR^+}{LR^-}$	

- Chi-Square test for independence
- (true|false) (positive|negative) based metrics:

		True condition			
	Total population	Condition positive	Condition negative	$\frac{\text{Prevalence}}{\sum \text{ Condition positive}}$ = $\frac{\sum \text{ Condition positive}}{\sum \text{ Total population}}$	
Predicted	Predicted condition positive	True positive	False positive (Type I error)	Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
condition	Predicted condition negative	False negative (Type II error)	True negative	False omission rate (FOR) = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$
	Accuracy (ACC) =	True positive rate (TPR), Sensitivity, Recall = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$	$= \frac{LR^+}{LR^-}$